
RC 13926 (#6258,3) 8/16t88
Human Computer Interaction 21 pages

rMNResearch Report
Evaluation, Description and Invention:

cq Paradigms for Human-Computer
I Interaction

(~ John M. Carroll X FL M e

User Interface Institute
IBM T.J. Watson Research Center
Box 704
Yorktown Heights, New York 10598

DTIC
S rzLECTJAN 24 1989D

STED770NS~- rN
Approved for pubhc r.603;1-

Ditribution Ux~Iimite

8009 or CHAPTER S W 19. A

Tthis rmei~ticrrpt tea boom submitted to a ubtdther for Oublttiofr "s a tiook or book etrapte ftVRevft are vdso tt copies tow, Iti distrrbuted of
thre aujthor I requeki tor ire putpoue t f *ditorral re.e "n ,rterrrA4 ntorrmelo Ontly ONotributiorr beyOnd waiprafnit or 6UPI'tetro"n a hlot* or ' nin a ct

rttror,zed cotpt by anyrrass perraasion of tho autor Ttrrq reortf -II be w daiu ud of IBM up to One year mote, tire IBM puktrcot.on dotg

~ esearch 01vfiIBM 'Yorktown Hights, %ew York *San Joie, Califoni - Zurich. Sw~titeand

Evaluation, Description and Invention:
Paradigms for Human-Computer
Interaction

John M. Carroll

User Interface Institute
IBM T.J. Watson Research Center
Box 704
Yorktown Heights, New York 10598

Human-computer interaction (HCI) is an urgent and rapidly developing area of computer
science research and application. As it continues to evolve and to define itself. it is possible
to identify distinct paradigms. or orientations to HCI research and application. Initially. HCI
work focussed on empirical laboratory evaluation of computer systems and techniques.
Subsequently. empirical studies of usability were organized by and addressed to cognitive
theoretical description of user behavior and experience Currently, the focus of HCI work is
shifting toward a more directive role in invention, design and development of systems and
techniques. The progression of these three paradigms comprises a case study of a field
discovering what it is about, and more generally, of the variety of roles available in the
psychology of technology. . . ., , i ,-

To appear in M.C. Yovits (Ed.) Advances In Computers, Volume 28.
New York: Academic Press, 1989.

Accesion ~

NTIS-.

f.0.7?*ItC 7

By

Dict

A-,

CONTENTS

I. Iluman Factors Evaluation .. 2
I, 1 Direct empirical contrast .. 2
1.2 ,ack of theory .. 4

2. Cognitive Description .. 5
2.1 Breadth versus depth ... 6
2.2 D esign by deduction ... 8

3. U sability-Innervated Invention ... 9
3.1 Psychology as a mother of invention 10
3.2 Ecological analysis ... 12

4. The Ecology of Com puting .. 14
4.1 Science and invention 14
4.2 The current perplexity .. 16

Note ... 17
References .. 17

I.E

CO NTEPNTS

A vivid image of the recent evolution of computer technology is that of a "race" between
function and usability. New technologies, new capabilities become available to users faster than
user problems can be studied, understood and addressed, For example, the many user studies of
word processing applications carried out over the past decade focused their attention on keyboard
oriented, stand-alone systems with small and low-resolution monochrome displays. In 19RI, our
group at the Watson Research Center turned attention to secretaries learning to use such word
processing applications. At the time, this was a novel application; computer editing was still
largely the province of programmers revising code.

But now, and without a finished analysis of word processing, the frontier of usability has
been pressed onward by the development and introdution of new applications and new interface
technologies. Communication applications such as electronic mail and computer conference
support raise usability challenges far more diverse than those raised by the extension of word
processing to nonprogrammers. In the current technology, multiple users cooperatively access
multiple applications via an extremely heterogeneous collection of workstation types. And even
as the usability issues in these new domains are being articulated and explored, leading-edge
prototypes are introducing gestural (e.g., handwriting) and speech input and interactive video
output. Such new developments are occurring more rapidly, more broadly across the industry,
and impacting more u.-ers ill the time.

The race between function and usability has made the area of human-computer interaction
(or TICI) a very high-profile research area within computer science and within the computer
industry: it is difficult to develop usability science and technology fast enough, but it is also
critical to do so. Indeed, the race has created the need for chapters like this one. lowever, this
attention has also helped to expose some fundamental perplexity about what the field is and how
it is supposed to work. It is still the case that IICI research has its principal effect on discrsurions
of usability and user interface design and only a small, derived effect on actual practice in the
design and development of computer systems and applications.

What is the goal of TIC! research? There need not be a single answer to this question. But
the more answers there are, and the more irreconcilable the various answers are, the more
fragmented the field will appear. In IlCI there are many answers to this question. One
traditional answer comes from the field of Iluman Factors: IICI needs to provide methods and
metrics for evaluating the usability of computers. A second answer comes from Cognitive
Science: tICI is a testbed for the application of cognitive psychology to a real problem domain.
A third answer comes from the exigencies of the computing industry: 11CI must help guide the
definition, invention and introduction of new computing tools and environments.

The practice of JICI is even more fragmented than its goals might imply. For example,
some varieties of human factors evaluation explicitly suggest that developing cognitive science
theories of TICI may impair progress in understanding usability (Whiteside and Wixon, 1987). On
the other hand, Newell and Card (19R5) warn that psychology might be driven out of FICI by
computer science unless it can develop predictive cognitive models, coining the slogan 'hard
science drives out the soft." Yet even the most developed cognitive models in IICI have had no
significant impact on the design of user interfaces (Carroll and Campbell. l096). Moreover. it is
paradoxically true that product innovations in user interface design have generally led ICI
research rather-than following from it in the conventionally assumed flow of "technology transfer"
from Research-to Development. The recent impact of the Apple Macintosh illustrates this.

Perhaps these conflicting and fragmented views of W!(1 can be understood as consequences
of the race between function and usability, of the rapid growth in needs, activities and
expectations. Perhaps the current perplexity about 11(I reflects an intermediate state in a true
evolution toward more effective approaches to understanding the usability of computer systems
and applications. In this chapter I take such an historical view, identifying three distinct
paradigms, or orientations to ICI research and application. Initially, IICI work focussed on
empirical laboratory evaluation of computer systems and techniques. Subsequently, empirical
studies of usability were organized by and addressed to cognitive theoretical description of human
behavior and experience. Currently, the focus of FICI work is shifting toward a more directive
role in invention, design and development. The progression of these three paradigms comprises a

Fvaluation. Description and Invention

case study of a field discovering what it is about, and more generally, of the variety of roles
available in the psychology of technology.

I. Human Factors Evaluation

The traditional role of psychologists working in the context of computer applications and
services is empirical evaluation of usaoility. The original research arena of human-computer
interaction is the psychology of programming and the professional programmer (Curtis, 1985;
Shneiderman, 1980). A prototypical example of this paradigm is a set of experiments conducted
by Sheppard, Curtis, Millman and Love (1979). In one of these, participants were given 20
minutes to reconstruct from memory a Fortran program of 26-57 lines that they had studied for
the preceding 25 minutes. Two approaches to "structured" program organization (linear sequence,
structured selection and structured iteration: Dijkstra, 1972) were contrasted with a "convoluted"
organization (including backward exits from DO loops, arithmetic IFs. and unrestricted GOTOs).
Reconstructive memory for the convoluted program organization was poorer (i.e., error rates were
higher) than for either of the structured organizations (though only in one case was the difference
statistically significant).

Such early work in the human factors of programming was important in demonstrating the
feasibility of empirical assessment. By addressing some of the timely issues of the day, it
broadened the grounds of debate in software technology from formal analysis and system
performance to include usability and productivity issues. The basic paradigm of directly
comparing two alternate designs in a usability evaluation is still the standard of practice in much
JICI research and in many product development laboratories.

1.I Direct empirical contrast
The development of empirical methodologies for evaluation, and the exercise of thes

methodologies in the context of software and system design, is a continuing need in liCl. Direct
empirical measurement is still the only adequate means of assessing the usability of software
techniques and computing artifacts (Carroll and Rosson. 19 5; Curtis, lq80; Gould and Lewis,

1985). Fstablishing the importance of usability to the success of computing systems and
techniques, and developing and promoting empirical methodologies to make usability evaluations
have been major foci of TICI work.

From the start, IICI evaluation studies were strongly influenced by research practice in
experimental psychology: emphasis was placed on tightly controlled laboratory approaches. From
an historical standpoint, this was a reasonable move: there was an acute lack of theory and
methodology for investigating usability. These laboratory studies generally took the form of direct
contrasts: computing artifacts or techniques were directly pitted against one another in a brief but
behavior-intensive measurement session. This evaluation work produced a variety of findings,
often framed as guidelines for software development practice and user interface design, generally of
the form "A is better than B." And perhaps even more importantly. the work set a more
objective standard for usability evaluations, and provided a systematic basis for scrutinizing
designers' hopeful intentions and trade press reviewers' glib comments.

However, there are many limitations inherent in the laboratory-based direct contrast
methodologies -of experimental psychology. These limitations became clear when the
methodologies were applied in the complex practical contexts of IICI design. Controlled
laboratory studies of software are difficult to design and carry out. The investigator needs to
master programming languages and computer applications in order to be in a position to assess
others' performance and to interpret their experiences. The experimental tasks that are studied
necessarily require skilled human participants and involve learning and using very complex tools.
This is expensive and time-consuming research. Such difficulties just don't come up when one
takes an experimental appioach to memorizing nonsense syllables, the stock-in-trade of traditional
experimental psychology, or to making timed responses to meaningful but simple objects like
isolated words, its more modem variant.

In experimental psychology, the sheer differences in recall rate or response times may be all
there is to know about a person's performance in a task: the situations are relatively simple.

Fvaluation, I)e,:cription and Invention 2

Understandably perhaps, such work is directed at collecting straightforward quantitative indicators
of performance like task times and error rates, and formally testing these for statistical significance
of direct contrasts (that is, computing the probability that obtained score differences might have
occurred by chance). IICI situations, however, are not simple at all. In many cases it may be
more important to know how people approach a task, or how they feel about their performance,
than it is to know how quickly or successfully they perform. Nevertheless, the early commitment
of IRA evaluation work to direct contrast studies created a strong bias for collecting quantitative

• indicators of performance, like time and success measures, and against placing primary, or even
equal emphasis on qualitative data (which in other human factors contexts have often played a
more prominent role; Chapanis, 1959: 23-95).

These constraints of direct contrast laboratory methods took a toll on the relevance of HICI
evaluation work. The difficulties of designing and conducting controlled experiments in complex
circumstances, inclined investigators to make use of scaled-down tasks, for example, memorization
and reconstruction of small programs. The focus on quantitative differences inclined investigators
to focus on the simplest of performance measures. This undermined the fundamental objectives
of human factors evaluation, transforming questions about complex human behavior and
experience in complex computing environments into simple scores of performance on toy-scale
tasks. Such work could not answer the underlying "why" questions that motivated human factors
evaluation in the first place; it could not provide the depth of understanding necessary to help
guide the design of new software techniques and applications.

Yet this style of work became quite pervasive. I edgard, Whiteside, Singer an-d Seymour
(1980) assessed the use of symbolic notations in text editor commands by contrasting a command
language having extremely complicated symbolic conventions with one almost free of these.
Murrel (1983) contrasted message-based and window-based communication for a cooperative
decision-making task. Ilolt, Boehm-Davis and Schultz (1997) contrasted object-oriented design
with more standard approaches. But exactly what is it about symbolic notations that is bad?
What is it about window-based communication and object oriented design that is good? None of
these projects resolved the over general evaluation issue it posed. And none collected detailed
enough information to contribute to a conceptual understanding of the issues involved.

Worst of all perhaps, these simplifications frequently did not even produce the statistically
significant differences they were adopted to facilitate. The use of indentation to highlight structure
in program listings seems intuitively like a good idea. It's a simple factor that can in principle be
conveniently removed from the complications of the real programming process for direct contrast
laboratory study. lowever, love (1977), Shneiderman and McKay (1976) and Weissman (1974)
all failed to find significant benefits of indentation. Studies of variable names have produced a
conflicting potpourri of results; sometimes mnemonic names are more effective than
non-mnemonic names and sometimes not (Shneiderman. 1980: 70-71). The daunting possibility
remains that it was becaute of the trivial tasks that were studied and the limited types of data that
were collected and analyzed that no differential benefits were found.

Such practical problems with direct contrasts encouraged experimental designs contrasting
extreme positions, again to increase the possibility of measuring statistically significant differences.
Ledgard et al.'s (1980) assessment of symbolic conventions contrasted extremely complicated
examples of such conventions with an extreme absence of them. I iebelt, McDonald, Stone and
Karat (1982) showed that a menu system was easier to learn when the menu hierarchy was
organized than when it was disorganized (!). Indeed, in the Sheppard et al. (1979) experiment,
several alternate approaches to "structured" programming were consistently indistinguishable based
on the data, however the extreme alternative of "convoluted" programming produced significantly
poorer perfl mance than one of the structured approaches. In a sense, this study did not so
much verify the benefits of deliberately structuring code as it did the risks of deliberately
mis-structuring it. (Obvious and extreme evaluation contrasts are still sometimes professionally
encouraged as long as they employ "an interesting methodology," Green, 1987: 6.)

Finally, human factors evaluation work is highly constrained by the often prodigious
amounts of time required to make direct experimental contrasts of alternatives. Indeed, it seems
logically doomed to consume more time than the evolution of software it is intended to guide.
By the time the Sheppard et al. (1079) paper appeared, structured programming methods were

Fvaluation, Description and Invention

already the established practice. The evaluation work confirmed what had already happened,
rather than playing a causal role in the evolution of practice. This limitation of the evaluation
paradigm for HCI could be called the "evaluation dilemma": one cannot evaluate something that
does not yet exist, hence direct evaluation always lags development by some fraction of a
development cycle (Carroll, 1987a).

In sum, the exigencies of direct contrast laboratory work entrained compromises in the face
validity of the work itself, and in the end, often failed to produce definitive or timely evaluations.
flow should programs be structured? how should hypertextual information systems be
navigated? One cannot answer these questions with a few simple performance measures, but they
are surely empirical questions. Answering them would involve developing a detailed
understanding of what people do and try to do with programs and applications and the rich
interaction of these goals and actions with the constructs of programming languages, the facilities
of computing environments, aspects of the workplace, and many other factors.

These complexities have had a predictable effect: even in quarters where human factors
evaluation is the official operating paradigm, most of the impact of psychology on the
development of technology has come about through task analysis or consulting. Indeed, to a
considerable extent human factors evaluation has become an historical stage in the development
of current HtCI. We return to the curious schism between what is officially anointed as standard
practice and what is in fact the standard practice in later discussion of the invention paradigm for
|ICI.

1.2 Lack of theory
The guiding hope in doing evaluation work is that the data collected and the methods

developed can cumulate into coherent analyses about why some systems and techniques are more
usable than others, and about how to enhance the usability of future systems and techniques. It's
a bottom-up approach to developing theory. lowever, directly contrasting two complex
situations (e.g., two versions of a system) to determine which one is better is a poor vehicle for
sorting out and saving experience. Complex alternatives with no a priori theoretical analysis do
not become interpretable merely in virtue of a simple horse race. It would take an infinity of such
"one-off contrasts to build a theory from the bottom up. Even the simple and controlled
situations studied in experimental psychology would be intractably indeterminate without
top-down theoretical direction.

Many of the difficulties with direct contrast evaluations can be attributed to this lack of
theory. The use of toy-scale problem domains and simple, quantitative measures is problematic
in that without a theory of TICI domains there is no way to know whether a toy problem is
representative of a real problem or not. There is no way to know whether one is studying a
coherent part of the real problem, or an accidental and idiosyncratic case. Can an analysis of
writing 50-line programs be scaled up to the problem of writing 5,000-line programs? Is the task
of pointing a cursor at an arbitrary screen location a coherent part of the task of pointing a cursor
in the course of editing text? Are interpretations of isolated system events related to
interpretations of the very same events embedded in a real stream of user interaction? Answering
such questions is impossible without a theory with which to interpret the toy situations and to
extrapolate from them to real situations.

Sheil (1981), for example, noted that complexity is not linear with program length. It
certainly seems that the task of editing a 5,000-line program raises problems of navigation and
naming conventions that are just not raised in the task of editing a 50-line program. Elements of
IICI situations may interact and trade off in different ways as the problem scale or the task
changes. Is avoiding GOTO statements more or less important that employing indentation in a
program listing? And are there :ontexts in which the relation is inverted? Again, without a
theory there is no way to extrapolate these interactions. Indeed, one can do little more than
organize separate studies on the basis of superficial features e.g., as pertaining to variable names
or menu systems). Without a theory of, for example, how people understand, name, and
remember entities, there is no way to work back from a variety of performance differences

Evaluation, Description and Invention 4

obtained in a variety of experimental settings to an explanation of the underlying concepts that
caused the differences (see Newell, 1973).

In the absence of a theoretical framework for understanding usability, IICI evaluation work
has had to address issues at a very large grain of analysis. llauptmann and Green (1983), for
example, contrasted a natural language interface with a menu interface for creating business
graphics (failing to find any significant differences in time, errors or attitudes). Of course,
contrasting natural language with menus is painting with a rather broad stroke: how could a single
experimental contrast resolve such a multifaceted contrast? Were the two interfaces individually
optimized to be the best interface possible in their respective interface styles? Were they
controlled to have the same functional capabilities and the same task-relative functional
capabilities? The same kinds of questions arise for the examples discussed earlier, evaluating
structured programming, object oriented programming and symbolic notations. The lack of
theory forces these crude contrasts; but the crude contrasts prohibit pertinent or univocal results.

Methods and theories in software technology are often collections of loosely connected
prescriptions. Ideas like structured programming and direct manipulation (Shneiderman, 1983)
are important theoretical concepts, and they surely carry empirical consequences. But they are
not falsifiable in the Popperian sense (Popper, 1965): one cannot hope to reject such ideas [out
,urt on the basis of isolated laboratory tests, to try to do so is to get the logic of the inquiry

wrong. From our current perspective of a few years hence, it is clear that no outcome of the
Sheppard et al. (1979) study could have rejected structured programming as an appropriate
prescriptive theory. The real evaluation need is for detailed qualitative information that can guide
the revision and integration of such ideas. The issue is not whether structured programming is
good, or indeed whether it is better than some other approach; the issue is what structured
programming really consists in, how in detail it impacts actual programming tasks, and how it can
be integrated into routine programming practice.

The assessment goal is just too limiting: a paradigm that merely evaluates distinctions
articulated by others, deprives itself of playing any directive role (Sheil, 1981). In this context, we
can understand why studies like Sheppard et al. failed to lead to the development of an articulated
theory of programming: the evaluation enterprise bound itself to what already existed,
commenting at a high level on the appropriateness of specific techniques from the mid-1970s. A
poignant example is the work showing that input error rates are reduced when using teletype
terminals instead of visual display units (Walther and O'Neil, 1974; Carlisle, 1970). It was never a
possibility that teletype terminals would supplant visual display units through the course of
technological evolution, quite the contrary. The bald evaluation result, without specific
implications for the design of future visual display devices, can only be seen as an historical
curiosity.

Empirical evaluation of software and systems is a key to usability. But it is a separate
question whether a science of human-computer interaction can arise out of this activity. In fact, it
did not. The evaluation paradigm introduced psychology and psychologists to the fICI problem
domain. It was a platform for establishing the importance of usability and for developing
empirical approaches to measuring the usability of systems and software. I lowever, its
methodological commitments and lack of theory cast it in a supporting role in emerging software
and user interface science: more of a commentator on new technology than a directive force.
The challenge .that this raised was how psychology could play a more directive role in the
development ot new software and user interface technology.

2. Cognitive Description

In the early 1980s there was a shift toward bringing IlCI research under the aegis of broader
psychological theory. Shneiderman (1980: 51), for example, used Miller's (1956) classic paper on
human information processing limitations to derive the prescription that programmers avoid the
use of GOTO constructs. Shneiderman analyzed the process of understanding programs as
involving the recoding of lines of code into meaningful "chunks". GOTO jumps in a program
text disrupt this structure by functionally chunking nonadjacent lines of code. In 19R3, Card,
Moran and Newell (1983) published a compelling monograph adapting information processing

Evaluation, Description and Invention 5

psychology to the description of fluent user interaction with text editors. i iese efforts had an
enormous effect, enlarging and intensifying interest in the psychology of usability both within
computer science and within psychology.

This shift confronted one of the key limitations of earlier work, the lack of theory. Tying
specific empirical results to theories of human information processing provided means to integrate
diverse results, to resolve nonsignificant or conflicting findings, to dampen the distortions of poor
research, but most importantly to develop abstractions that, in principle, could help lead the
development of software technology and user interface design.

lowever, this work also raised new issues and problems. Aligning IICI phenomena with
cognitive descriptions of those phenomena is useful to the extent that the cognitive descriptions
themselves are rich, revealing and well-integrated. In fact, psychological theory is at least as
fragmented as software theory and methodology. Building a psychology of usability by placing
this body of fragmented theory into correspondence with software situations risks inheriting the
fissures as well as the solid ground. Ironically, cognitive description work also threatened the
major achievement of human factors evaluation, namely, establishing the centrality of direct
usability testing to the ultimate success of computing systems and techniques. The cognitive
description paradigm entrained a strongly analytic conception of software design, raising the
question of how much direct evaluation might be necessary if a good theory were in hand.

2.1 Breadth versus depth
Scientific psychology seeks to understand behavior and experience by providing laws,

concepts, and explanations. lov ever, there are severe limits on what types of phenomena
psychology can address with these goals and tools; there are ranges over which the goals and tools
make sense and outside of which they do not. In particular, academic psychology typically
attempts to capture generalizations across domains. But fine details of specific task situations can
be very important: what a person thinks and decides to do is often ascribable to knowledge of a
single fact, e.g., the name of a particular command in a particular system. These fine-grained
details serve as boundary markers for theorizing: scientific laws that must refer to individual facts
as conditions seem unwieldy, and psychologists routinely make a strategic retreat to abstract or
artificial domains to control such details.

This is a reasonable heuristic, with extensive precedent in the sciences. Classical mass point
mechanics is developed under the idealization of frictionless contact, even though there are no
frictionless systems. Other theoretical apparatus has been developed to add back the effects of
friction in real systems. The difficult details of friction are treated as "perturbations" of the
classical theory (Gleick, 1987). Similarly, the traditional research strategy in psychology has been
to focus on sweepingly general issues and distinctions under the idealization that domain and
situation context can be ignored. Basic psychological research addresses topics like the "structure
of memory," but not, for example, "memory for Unix commands" (Norman, 1981). It tries to
generally resolve 'big' issues like 'is there a separate mental !ype for imagery?" (Pylyshyn, 1973:
Paivio, 1971).

It turns out that describing frictionless contact provides a useful foundation for
understanding the motion of real objects in real circumstances. Even though the effects of friction
are not simple, treating these effects as perturbations of an idealized theory has also proven
tractable in etineering applications (for example, computing trajectories). T'he question is
whether the same basic strategy is useful in psychology. This is an open queo-ion Newell (1973),
for example, criticized the pursuit of sweeping dichotomies like existence of a separate mental type
for imagery, saying "you can't play twenty questions with nature and win." Indeed, the emergence
in the 1980s of Cognitive Science as a broader discipline, incorporating psychology with the
serious consideration of the structure of task domains, can be seen as a response to traditional
idealizations (Carroll, 19R8a).

Chase and Simon's (1973) classic study of expertise in chess showed that, for a
reconstructive memory task, chess masters tended to recall piece positions in attack and defense
groupings. This study has had two very different legacies. On the one hand, it opened up a
variety of questions about domains. flow are chess piece groupings indexed in a player's

Fvaluation, Description and Invention

memory; how they are accessed in realistic tasks (like playing chess, as opposed to reconstructive
memory for arbitrary board positions), how does expcrtise in chess develop through significant
spans of time? Many of these issues have been pursued and in a variety of domains (see (hi,
Glaser and Fart, 1988), though many would argue that the work still takes too narrow a view of
the process of attaining expertise and of the nature of expert knowledge and performance (e.g.,
Dreyfus and Dreyfus, 1986).

On the other hand, Chase and Simon's result was sweepingly generalized as "experts have
chunks," and has been mechanically replicated in domain after domain. There is no rich and
well-integrated theory of either experts or chunks outside of considerations of specific domains.
Thus, these studies show only that when humans know something about a domain and are asked
to do reconstructive memory tasks of an arbitrary sort, they use what they know to do the task.
A series of these studies have been undertaken in IICI contrasting memory performance for
scrambled and unscrambled program listings (Adelson, 1991; McKeithen, Reitman, Reuter, and
Ilirtle, 1981, Shneiderman, 1980). This work showed that people with programming experience
can use knowledge of language structures in organizing their memories.

This finding has not led to rich understandings of how people achieve expertise in
programming or about how programming knowledge is indexed in memory and accessed in
performance. It has not helped to guide the development of new software tools and
environments. These cognitive descriptions do not address and provide no guidance in practical
aspects of programming (the design of programming languages, environments, education, etc.);
they do not even engage issues specific to the domain of programming (the types of modules one
would want in a library to facilitate code reusability).

An extensive tradition of psychological research describes learning, memory and error
patterns for paired-associates, the classic nonsense syllable (e.g., Fsper, 1925; Postman and Stark,
1962). This work has been applied to the analysis of user performance with various types of
command languages (Barnard, lammond, Morton, Tone and Clark, 1981; Carroll, 1992;
l,andauer, (alotti and lartwell, 1983). For the most part, these applications have been no less
mechanical than those of the "experts have chunks" work. Yet they have been relatively more
successful in that the cognitive descriptions dcveloped for command language interactions have
had fairly specific prescriptive content for command language design. Indeed, IC! research on
command names has led to specific revisions in philosophical and linguistic conceptions about
what names are (Carroll, 1985).

But this work, and indeed all cognitive description work in IICI, is subject to a very
fundamental problem in the underlying logic of the inquiry. Psychology concerns itself with
exi.xtence: is there a separate mental type for imagery? tIC!, like any applied science domain.
conccrns itself with impact: how much of a difference will ce,-tain types of consistency make in the
learnability of a command language? This is why the "experts have chunks" work seems
reasonable from the perspective of our curiosity about chess masters and other experts, but
difficult to apply in the face of questions about how to support experts and facilitate the
development of expertise. This is also why the use of extreme contrasts, like scrambled programs
versus structured programs, can make sense in the pursuit of basic theory, but much less so in the
putsuit of meaningful application.

Landauer (1987a) has recently called attention to this in observing that while basic
psychology routinely focusses on the "significance" of effects, it typically disregards the size of
effects. Cognitive descriptions framed in terms of existence dichotomies can he assessed by the
statistical significance of direct ,nntrasts: do expert programmers chunk more than novices?
However, such differences do not guarantee that the effects will be large er,,gh to matter.
Would it matter if experts reliably chunked 2 percent more than novices? Would it matter if
scrupulously consistent command languages were learned 3 percent faster than randomly
consistent languages? To determine the practical size of effects one needs to consider cost-benefit
tradeoffs in realistic task" Chunking may have a big effect on people trying to memorize
scrambled little programs, but the size of effect question forces attention to real programmers
writing and reading real programs. The two situations might be quite different.

Ftvaluation. Description and Invention

2.2 Design by deduction
IHCI is fundamentally a design domain: it exists in the first place because of the need to

design more usable computing artifacts for people to use.)esign in a complex and poorly
charted domain can seem like trial and error. I low should user interface design work proceed to
ensure more usable user interfaces? The human factors evaluation paradigm sought to address
this kind of question by providing methodology for directly evaluating design techniques (like
structured programming) and particular artifacts (for example, a particular programming language
or prograraiing environment). But direct evaluation operates on a case by case basis. The
cogniti,,- iescription paradigm sought to improve upon this by providing theoretical abstractions
bey .A the specific cases (see Moran, 1981).

Card, Moran and Newell (1983) made what is surely the most thorough and disciplined
attempt to interpret and develop modem information processing psychology into a foundation for
the design of computer systems. In their GOMS model (an acronym for Goals, Operators,
Methods and Selection rules), users hierarchically decompose their goals into successively finer
subgoals until these match a basic set of methods. The user has rules for selecting methods
appropriate to the current situation, and each method itself consists of a sequence of operators,
keypresses and hand motions. This analysis was fitted to a variety of text editing performance
data, in many cases yielding consistent values for the model's parameters.

However, the theory proved quite limited in application to user interface design. GOMS
was not able to describe problem-solving activity, only routine, over-practiced performance. In
fact, it could not describe errors at all, even though nearly a third of the routine behavior it sought
to describe consisted of error and error recovery. It was also severely hampered by the race
between function and usability: By the time it had produced good performance descriptions for
error-free, over-practiced behavior on line-oriented editors, the focus of concern in user interfaces
and end-usr applications had moved on to other problem areas. (See Carroll and Campbell,
1 96, for further discussion.) The work had its greatest impact on relatively low-level aspects of
human-computer interaction, like the analysis of pointing devices (Card. English and Burr, 1978).
Indeed, it appears that this approach may only work for user interaction events on the order of
one second in duration in which errors are extremely rare and/or extremely regular (!), and for
technological contexts that are unchanging on the order of decades (Newell and Card, 1985). Few
design problems in ICI fall into this rather severe category.

Most cognitive description work is far less theoretically ambitious than the GOMS work.
For example, the use of menu selection, as an alternative to typed commands is sometimes
"deduced" from the fact that humans are better at recognition than at recall (e.g., Tennant, Ross
and [hompson, 1983). This is terribly oversimplified. ('sers of menu systems must deal with
formidable navigation problems (MacGregor and lee, 1997: Robertson, McCracken, and Newell,
19 1). They must deal with complex morphological, semantic and referential relations between
various selection names (Carroll, 19R5). H1ere again, the evolution of user interface technology is
complicating the simple dichotomies: rich aliasing (Gomez and I ochbaum, 1995) may
substantially mitigate the relative difficulty of recall and alternative approaches to menu design
may carry differing performance implications (pop-up menucs, multiple selection menus, active
forms). Finally, though the advantage of recognition over recall is an established sweeping
principle in psychology (e.g., Crowder, 1976), Black and Sebrechts (1QRI) have observed that
there are circurastances in which the reverse is true.

We earlier considered Shneiderman's (1980) reference to Miler's (1956) analysis of human
information processing limitations in grounding the prescription to avoid GOTOs. Miller's
specific argument, however, does not consider spatial or temporal proximity of items to be
"chunked." Accordingly, the GOTO prescription cannot be deduced from Miller's analysis.
Indeed, virtually nothing of much interest could be deduced from the specifics of Miller's analysis.
The connection is more informal: Miller's work called attention to the (obvious) fact that
humans are limited with respect to the information they can manage; Shneiderman was inspired
by this to suggest a particular tactic for easing information management in programming. '[he
informality of the theoretical linkages is not specially problematic: the non-psychological
theory-components of !!(71 do no better (e.g., what is an interface toolkit?). laving theories

Evaluation. Descriptin and Invention

cogent enough and pertinent enough to even informally direct and inspire design work is a big
advantage.

The problem vis-a-vis design by deduction is that in none of these examples of cognitive
description applied to design do we have in hand the ancillary theoretical apparatus to deductively
bridge between the leading claims" and the implementation details. CYOMS is probably a
reasonable first approximation framework for thinking about task analysis. Recognition probably
is easier than recall in many circumstances. GOlC)s probably do strain human information
processing capacity. But to use this theoretical material deductively in design we need to know
precisely how the details of given situations interact with and modulate the psychological
principles. None of the theories is complete enough to tell us this. Hfence none can be used
deductively.

To an extent, this lack can be addressed through theory development. For example, Poisn
(1987) has developed the GOMS approach into a potentially more useful design tool. Ilowever,
other considerations indicate that IICI design can never be rendered deductive. The particular
complexity of software technology stems from the fact that everything inherently interacts with
everything else (Brooks, 1987). The technological context plays an important role in determining
whether an idea will survive at all. For example, object oriented techniques have been seen as a
major advance in software technology, but the successful use of these techniques is limited by the
availability of appropriately supportive programming environments (I ebbing, 1987). Many times
these interactions cannot be anticipated at all. Presenting rich information displays and direct
access to running code often entrains cluttered displays and inefficient performance. Many of
these critical details and interactions cannot be analyzed before a prototype system is built.
Indeed, one of the most important determinants of the success of software technologies is their
amenability to revision and reimplementation on hardware and software platforms not even
available when they were first developed (Brooks, 1987).

The cognitive description paradigm in I ICI was a genuine advance. It provided independent
conceptual foundations for the psychology of iICI that made it possible to develop useful theory.
Reciprocally, it brought the IRAI domain within the purview of academic psychologists. This has
opened a two-way dialog within which basic cognitive psychology may stand to gain as much
from the cognitive engineering case study of [ICI as IC may stand to gain from the science of
cognition (CarroU, 1987b; Norman, 1987).

3. Usability-Innervated Invention
The human factors evaluation and cognitive description paradigms share basic assumptions

about the position of psychological analysis in I(1l. They assume that psychology operates
outside the development process, outside even the research prototyping process. They assume
that the role of psychologists in IICI is to offer commentary: evaluations, theoretical descriptions,
but not direct participation in the invention, design and development of new II(1 technologies
and artifacts. This assumed positioning and role for psychology in IICI is all the more striking
when one recognizes that IICI is fundamentally a design domain. IICI is about designing new
software tools and user interfaces. Seen in this light, the traditional paradigms for psychology in
HCI have pursued a tangential, supporting role in the field's key endeavor and raison d'etre.

It has, of course, been recognized that serious usability research needs to pay serious
attention to the nature of IICI domains and tasks. This concern has always been in the focus of
IICI work. But being relevant to designer needs is not the same as taking the initiative in the
design work itself. The implicit division of labor in IICI has had chronic organizational
consequences. For example, a recent panel discussion at the ACM CIII'8 Conference asked
how human factors specialists, and cognitive scientists working on usability, can organize to
effectively work with designers and developers (CGudin, 1988). The answers offered are revealing:
human factors professionals, should be placed directly into development groups, human factors
professionals should manage the developers, usability consultants from outside the organization
should be used (1). The traditional paradigms created an organizationally adversarial basis for the
exchange of commentary between software developers and psychologists.

F.valuation. Description and Invention

The traditionally assumed positioning and role of psychology within IICI is now being
seriously questioned. In this new paradigm of "usability-innervated invention," usability is seen as
connecting the invention of HO(I artifacts to user needs no less essentially than nerves connect
organs and muscle tissues to sensory and motor brain centers. The activity of muscles and organs
is meaningful only insofar as it is innervated by sensation and action; the activity of inventing
HCI artifacts is meaningful only insofar as it is innervated by usability considerations.
Conversely, sensory and motor centers exist at all to innervate the body's muscle and organs;
understanding usability is important because it produces the critical direction for tICI invention.
In this view, TICI artifacts are not merely evaluated or described in terms of their usability; they
are conceived and created for usability.

3.1 Psychology as a mother of invention
Building and inventing things is not a traditional activity in psychological research.

Psychology is part natural science and part social science; its traditional focus is the analysis of
natural and social phenomena. In the technological arena of IICI, this traditional focus was
straightforwardly extended to the analysis of technology through evaluation and theoretical
description. But these traditional activities also provided the opportunity for psychologists
working in IICI domains to develop technological skills and domain experience. In many cases,
these psychologists are now in a position not only to analyze usability problems, but to synthesize
technological solutions. In his plenary address at the CII + GI'87 Conference, Tom Landauer
(1987b) succinctly captured this in casting "psychology as a mother of invention" in IICI.

Many recent prototype systems and interface techniques were invented by psychologists to
instantiate specific psychol,;gical claims and to allow these claims to be explored and developed
empirically. For example, landauer's group analyzed human performance in a variety of naming
and reference tasks to develop specific tools and techniques for keyword information systems (e.g.,
Fumas, Landauer, Gomez and Dumais, 1983). The database system Rabbit (Williams, 1984) and
its "retrieval by elaboration" paradigm embodied claims about the structure of human memory
and memory search as consisting in the manipulation of concrete exemplars. The variety of
"Minimalist" training materials and software environments described in Carroll (1988b) embody a
set of claims about how new users learn computer applications. The display management system
Rooms (Card and ltenderson, 1987) embodies an analysis of typical user working sets (services
and data accessed simultaneously).

User interface metaphors are a systematic and detailed intrusion of psychology into modem
computing system development (Carroll and Thomas, 1982; Carroll, Mack and Kellogg, 1988).
For example, systems that provide electronic workspaces that can be written to and viewed by
multiple users in a cooperative interaction session are presented as "chalkboard" systems in the
way that they are described to users and even in the way they appear and operate (Stefik, Foster,
Bobrow, Kahn, Lanning and Suchman, 1987). Thinking of the system as a physical chalkboard
provides an initial familiarity for the user. It also suggests specific tasks and approaches to
accomplishing them. It provides the user with an initial conceptual vocabulary within which to
couch questions and draw conclusions. (Analogous points could be made for other new
computer interface designs ranging from task oriented window layout (Carroll, Ilerder and
Sawtelle, 1987),-to object oriented programming (Rosson and Alpert, 1998)).

Many recent structure-directed editors anti intelligent tutoring systems for programming are
clearly vehicles for instantiating psychological analyses of programming tasks and learning. For
example, analyses of programming plans (e.g., Soloway and Ehrlich, 0984) are embodied in the
Bridge tutor (Bonar and Iiffick, 1987). Analyses of how students learn to program in Lisp
(Anderson, Farrell and and Sauers, 1984) have been embodied in a variety of intelligent tutoring
systems for teaching Lisp (Anderson and Skwarecki, 1986; Reiser et al., 19R8). Indeed, Anderson
has recently (1987) argued that designing and evaluating computer tutors provides unique
advantages to basic, academic psychological research into the mental procedures and knowledge
that comprise human cognition.

Of course, psychologists per se are not always the inventors, but psychological rationale
routinely plays a determining role in the invention of new software technology. In this work,

Evaluation, Description and Invention in

IICI transcends merely serving as an arena for applying empirical experience and theoretical
analysis to invention. A better description is that a two-way relationship has developed in which
HCI artifacts themselves are treated as media for codifying experience and analysis, in which IICI
theories are 'applied invention" no less than 11C artifacts are "applied theory" (Carroll and
Campbell, 1988). For example, the theoretical development of the concept "direct manipulation"
(Shneiderman, 1983) devolved from a collection of specific I (' inventions. But this constitutes a
radical shift in the underlying ontology of IICT, namely, seeing computer artifacts like interface
metaphors, menu hierarchies, programming paradigms and languages, tutors, and the like as
playing theory-like roles.

One standard role of theories is to codify empirically falsifiable claims (Popper, 1965).
Artifacts embody testable claims about how users can understand and make use of system
function in a medium that makes appropriate empirical investigations possible. Each command
name, each icon, each menu makes claims about the ways users think about the tasks they will
undertake with these systems.

These claims are mutually interrelated, creating a sort of web of theory more intricate and
more comprehensive than any analysis deducible from conventional discursive psychological
theory. A piece of software, like the Unix operating system, makes a huge number of specific
claims about what command names, operations, and so forth will be convenient for users. These
claims can be wrong (see Norman, 1984). Desktop interfaces make myriad claims about familiar
presentation and natural conceptual vocabularies, about clipboards, stationery pads, folders, waste
baskets -- about how these objects behave and interact. Moreover, the leading claims, for
example as integrated within a metaphor like the desktop, have myriad specific dependencies on a
diverse set of ancillary claims (for example, claims inherent in the presentation of highlighting,
preferences, and scrolling elevators).

Empirical theories provide explanations by placing logical and causal constraints on
phenomena. Artifacts support explanations of the form "this specific feature has this specific
usability consequence." The "Tear Off" command in the early Lisa desktop system provides an
example. In this system, 'rear Off" spawns a new instance from a prototype object: Tear Off
stationery applied to a stationery pad creates a piece of stationery. The command was a menu
selection, not a gesture (Move is an example of a gestural command: one selects with the pointer
and then moves by moving the pointer). Thus, there was a sort of inconsistency between Mc ve
and Tear Off. Some users initially tried to Tear Off by selecting and then rapidly sweeping tlhe
pointer (making a tearing gesture). This error has little consequence, and proved relatively ea.
for users to sort out on their own. A more difficult problem stemmed from the fact that Tear O1'
also applied to non-pad objects like folders: the user needed to Tear Off from a "folder pad" to
get a new folder (Carroll and Mazur, 1986).

Theories also contribute to the development of science by providing useful foundations for
further theorizing. Artifacts facilitate theoretical development in the sense that given artifacts
make task analyses possible that in turn facilitate the invention and development of new artifacts.
The typewriter metaphor was a critical step in the development of the desktop metaphor, which
in turn has been critical in the development of newer interface metaphors such as rooms and task
maps. Understanding user problems at this level of qualitative detail can be of immediate use in
the desig- of new software artifacts. Indeed, in subsequent desktop interface products the Tear
Off command eyolved into a Make New Folder command.

Theories enable and compel greater explicitness in empirical claims. This is part of the
traditional motivation to formalize. Artifacts serve this role in a manner quite analogous to
classical views of simulation (Fodor, 1968; Newell and Simon, 1972). To paraphrase Newell and
Simon, both must "perform" the claims they incorporate: the implementation details must be
made explicit, which can lead to further learning about the nature of the claims being made.
Simulations, however, are used by psychologists, for specific research purposes; artifacts are used
by a wide range of people to do real work. Simulations are interpreted and evaluated by criteria
of descriptive adequacy (Chomsky, 1965): a simulation of problem-solving behavior may be
judged on the basis of how closely it fits the sequence of moves in a verbal protocol, whether it
predicts all and only the kinds of errors that are observed, etc. Artifacts are interpreted and
evaluated by criteria of usability.

Evaluation, De.cription and Invention II

Simulations are usually seen as convenient vehicles for theories, but not as necessary. Are
artifacts merely convenient expressions of 11(I theories, or do they play a more fundamental role?
This question cannot be answered now, but it seems likely that artifacts are in principle
irreducible to a more conventional theory medium. The reason for this, if it is so, would be the
unbounded interrelation of the many claims inherent in a computer artifact, the fact that
everything in software seems to impact everything else (Brooks, 1987), the fact that details of
context and situation critically impinge upon the usability of systems (Whiteside and Wixon,
1987; Winograd and Flores, 1986; Suchman, 1987). All these may he views of the same
underlying state of affairs: the design of software may be of an order of complexity beyond that
which conventional theories can explain or predict (Ilayek, 1967).

In the introduction, we considered the apparent paradox that product innovations in user
interface design often lead IICI research rather than following from it in the conventionally
assumed flow of "technology transfer" from Research to Development. flowever, the view of
HCI in which its artifacts play theory-like roles in organizing research defuses the perplexity of
this state of affairs. Empirical research often follows the explicit codification of theories. In IlCI
the medium of choice for expressing theories of usability is in many cases an exemplary artifact.
The appearance of such an artifact predictably stimulates empirical research.

3.2 Ecological analysis
The paradigm of usability-innervated invention has many consequences for the traditional

empirical roles of psychologists working in IICI domains. There are consequences both for what
kinds of situations are studied and for what kinds of information are sought in empirical studies.
In both areas, the driving considerations devolve from invention. The model of research practice
in experimental psychology, originally adapted to JICI through human factors evaluation, has
been augmented by the requirement that empirical work bear more directly on the invention and
development of new artifacts. In this sense, current work is shifting toward greater responsiveness
to the ecology of IICI as an ecology of invention, design and development.

Ecologically responsive empirical analysis of TICI domains takes place in vivo: in software
shops, more often than in psychological laboratories. It addresses whole problems, whole
situations, when they are still technologically current, when their resolution can still constructively
impact the direction of technological evolution. Its principal goal is the discovery of design
requirements, not the verification of hypothesized direct empirical contrasts or cognitive
descriptions. A recent example is Curtis, Krasner and Iscoc's (19R8) study of the software design
process. The detailed interviewing of real designers produced specific technical proposals for
improving software tools and the coordination of project management, an assessment of major
bottlenecks, and a new framework for thinking about software design as a learning and
communication process. (See Nielsen, Mack, Bergendorff and Grischkowsky, 1986, and Rosson,
Maass and Kellogg, 1988, for similar kinds of studies.)

Carroll and Campbell (1988) characterized HCI invention in terms of the "task-artifact
cycle': a given understanding of the tasks programmers need to and want to accomplish helps to
define objectives for new software artifacts (languages, environments and education, etc.) to
support them inthese tasks. Any artifact fundamentally alters the tasks for which it was designed,
raising the need for further task analysis, and in time for the design of further artifacts, and so on.
An example is--the progression from user interfaces based on the typewriter metaphor to those
based on the desktop. Early word processing applications were designed to exploit specific
knowledge their users already had about typewriting, function keys, data display, command names
and so forth (Carroll and Thomas, 1982).

The typewriter metaphor, however, altered office tasks and in doing so helped to open up
technological possibilities by preparing users for further electronic office applications (calculators,
calendars, mail, database). This evolution in office task expectations and understandings was
better addressed by systems employing the desktop metaphor. However, desktop systems also
presented a variety of specific problems and possibilities to users (Carroll and Mazur, 1986;
Whiteside et al., 1985). This further task analysis has again helped to define further interface

Evaluation, Decription and Invention 12

artifacts, new metaphors for display organization in user interfaces ("rooms," Card and I lenderson,
1987; "task paths," Carroll, I ferder and Sawtelle, 1987).

To constructively operate within the task-artifact cycle, IICI empirical work must provide
rich analyses of real users working on real tasks. The main research setting for such ecological
analysis is the case study. A case study can begin and end anywhere in the task-artifact cycle; the
key requirement is access to real situations. Case study task analysis usually consists of the
collection of detailed, qualitative information (thinking aloud protocols, interviews). Such data
are arbitrarily rich: they can be returned to over and over again, and analyzed from many
different perspectives. A typical approach is to make videotapes to create a vivid and permanent
data library. The development of Minimalist training materials and software environments, cited
earlier, was based on such case study analysis (Carroll, 1988b). Mack's (1987) inventory of new
user expectations about cause and effect relationships in the operation of a word processor was a
case study analysis culminating in the development of a prototype that more intuitively presented
word processing function.

It is important to collect information over a significant span of time to eliminate ephemeral
effects. Monitoring patterns of actual use of a software environment often supplements the more
direct interview and protocol techniques. Wixon, Whiteside, Good and Jones (1983) analyzed
patterns of spontaneous interaction with an electronic mail application to determine how to
design a more usable command interface for the application. Kelley (1984) analyzed the desk
calendars of office workers to determine requirements for an electronic calendar facility. Gould
and Boies and their collaborators have designed a series of voice messaging systems using this
approach (Gould and Boies, 1983; Gould, Boies, Levy, Richards and Schoonard, 1987).

The key goal of ecological task analysis in the task-artifact cycle is to produce requirements
for subsequent design work. This places emphasis on identifying big factors -- big needs, big
usability problems. Thus, one typical output of this phase is an error taxonomy, a qualitative
description of what is giving the user trouble, how it is happening, what users are doing in
consequence, etc. The complexity and rapid evolution of software technology requires richer and
more open-ended methods than the direct contrast testing of the human factors evaluation and
cognitive description approaches. This richer style of task analysis is interpretive, inductive; it
seeks to discover, not merely to confirm or disconfirm.

It often requires studying user interface technologies and applications before they are even
developed: after all, that's the point at which empirical guidance can be most effectively directive
(Carroll and Campbell, 1986). For obvious reasons, it is difficult to do such work, but a variety
of simulation techniques have been developed. For example, Gould, Conti and Ilovanyec7
(1983) simulated a speech recognition capability to explore technological tradeoffs in a technology
that was not then available. Carroll and Aaronson (1988) analyzed interactions with a simulated
intelligent help facility to help direct the development of more usable artificial intelligence
applications.

To help direct the task-artifact cycle, new types of usability data and new roles for usability
data are being developed. For example, since the ideas that lead JICI research typically become
codified in products first, it is important to e able to interpret running systems, to extract key
ideas and work with them. Norman (94) made an influential psychological interpretation of
key aspects of the Unix operating system. Carroll and Mazur (1986) analyzed new user
expectations and experiences using the on-line tutorial and direct manipulation interface of the
Lisa system. Rosson and Alpert (1988) have recently analyzed psychological implications of
objected oriented design. Carroll, Mack and Kellogg (1988) outlined tools for analyzing user
interface metaphors in design.

Another focus for the development of tools for empirical analysis is the process of sftware
and system development. A comprehensive methodology of goal definition and measurement has
been developed for guiding the discovery of appropriate usability requirements and evaluating
progress toward meeting these requirements within the design process (Bennett, 1984; Carroll and
Rosson, 1985; Whiteside, Bennett and hlotzblatt, 1988).

Usability-innervated invention offers a more directive role in framing new applications and
user interfaces, and a more ecologically responsive role for empirical work. It incorporates and
builds upon the prior orientations of human factors evaluation and cognitive description, but

Evaluation, Description and Invention 13

pushes onward in taking more seriously the fact that 11(I is a design field, that it exists to invent
more usable systems and software. Earlier approaches to psychology in I(I had in effect isolated
the task analysis part of the task-artifact cycle from the definition, development and first use of
new software and user interface technology, because of preconceptions about the kinds of
contributions psychologists might make to IICI. As a result, and in addition to a variety of
specific limitations discussed above, they offered only commentary on the process and products of
design. not participation.

4. The Ecology of Computing

The progression of three paradigms in the recent history of I ICI comprises a case study of a
field discovering what it is about. 11(1 has achieved much by exploiting the context of its own
practice. It has assimilated the evaluation methodology of experimental psychology, the theory of
cognitive science, and the invention and development of new technology. Each step ip this
evolution has solved some of problems posed by the step preceding it.

The emerging paradigm of usability-innervated invention redresses the ecological limitations
of direct contrast laboratory evaluations by promoting new methods and new roles for empirical
evaluation. It redresses the theoretical limitations of design by deduction by countenancing richer
sources and embodiments of scientific theory. This in turn has resolved other puzzles about IIC.
For example, the primacy of product development ideas in lIC research is puzzling only until it
is recognized that product development is a major context for IICI research: one of the important
roles of psychology in 11CI is to provide interpretation and conceptual clarification for product
innovations.

Even the mysterious race between function and usability dissolves: appropriately
contextualized ItCI research cannot lag the technological leading edge; it lives at the technological
leading edge; indeed, it creates the technological leading edge. For example. there is no race
between usability and function in the development of the Rooms display management system
(Card and lHenderson, 1987), even though the Rooms approach is at the edge of our current
understanding of display management tasks and artifacts. The race between function and usability
is simply an untoward side-effect of the organizational consequences of human factors evaluation
and cognitive description.

Usability-innervated invention offers a new basis for these organizational dynamics. When
the basis for collaboration is evaluative or descriptive commentary offered from outside the design
team, the grounds are frequently political, and power-based, or interpreted as political and
power-based. This is completely unconstructive: it pushes empirical evaluation and psychological
theory further away from invention. Operating within the task-artifact cycle as task analysts, as
inventors of artifacts, offers a deeper source of interdisciplinary and inter-organizational
coordination: shared understanding of what the problems are, why the current design situation is
what it is, what the immediate and longer-term options are, and how they trade off. It offers the
alternative of committed, cooperative work.

4.1 Science and invention
There is -a conventional view of the relationship between scientific research and the

invention, design and development of practical artifacts. The idea is that basic science provides an
understanding of nature which can then be applied deductively in practical contexts. The
relationship between science and invention in ICI, as it has emerged through the course of the
last 15 years, is interesting from this standpoint in that appears to be culminating (at least to this
point in time) somewhat unconventionally.

To be sure, the conventional view was what the field started out with: the vision of the
human factors evaluation and cognitive description paradigms was to develop an empirical basis,
to develop a theoretical framework and finally to apply the theory deductively in design. Through
hard experience. |ICI discovered that things were not this neat. Invention produces theory in
IICI at least as much as it applies theory and this has fundamentally altered the nature of the
empirical work. The resolution of this may lie in a countercurrent in the history of science,
questioning the conventional view itself. For example, ilindle (1981) analyzed a variety of 19th

Evaluation, Description and Invention 14

century inventions and failed to find any deductive grounding in the basic science of the time.
Ilindle suggests that the conventional view may have developed as recently as the 1850s in the
American scientific establishment as a tactic for increasing the prestige of and federal support for
basic research.

Many well-known instances of invention clearly do not conform to the conventional view.
The pulley, for example, had been used effectively for some 2.000 years before an adequate
scientific analysis of its operation was developed within Newtonian mechanics. The violins of the
17th century were so finely crafted that their design was merely emulated for over 200 years.
Indeed, only in the last couple of decades has there been any appreciable acoustic understanding
of how violins really work (lutchins, 1962). And it is not clear yet whether the science of
acoustics itself was more a contributor to or a beneficiary of this work.

Of course, there is a relation between basic science and invention, but not a simple
deductive relation. Gomory (1983) puts the point well when he argues that the development of
technology is both more complex and less predictable than the basic research from which it is
seen to spring. Gomory discusses the first 150 years of technology development for the steam
engine, lie shows that the "revolutionary" engines of the mid-nineteenth century actually evolved
through many small steps, each relying on the chance availability of a technological niche, an
application in which the technology could survive and develop. The case study of IICI suggests
that the relation between basic science and invention can be highly interactive and reciprocal.
The conventional view goes wrong in trying to frame this relation too narrowly.

It is a commonplace of the philosophy of science since positivism to observe that there are
no 'discovery procedures," no algorithms to carry us from the raw material of empirical science to
a theoretical explanation of that raw material. A way to put this point is to say analogously that
there are no "invention procedures": the logical leap from basic data and theory to the invention
and development of a usable artifact is neither more or less deterministic than the step we are
more familiar with, namely the step from the raw material of experience to a theory of a
conventional sort. The applied science of the conventional view is a myth.

Psychology is a young science, so is Computer Science, so is Cognitive Science, and above
all, so is HCI. But this raises the question of whether the complex and reciprocal interaction of
science and invention in TICI is attributable just to the youth of the relevant fields, to scientific
growing pains as it were. In view of this possibility it is relevant to consider the acoustic analysis
of the violin as conducted over the past 40 years by members of the Catgut Society, an
interdisciplinary group of musicians, instrument craftsmen, physicists and engineers. Carla Maley
Hutchins, the senior member of this team, told me an interesting anecdote about an early stage in
her collaboration with Bell labs physicists. The physicists' initial approach was to disassemble a
violin, induce sine waves and measure resulting resonances.

It's a beautiful image; it recalls the direct contrasts of human factors evaluation and the
shallow theories of cognitive description. It recalls models of error-free user behavior as bases for
understanding how to design usable computer systems and applications. It is the conventional
strategy of divide and conquer, which too often requires subtracting out the essence of the
problem being solved. Inducing pure sine waves into the pieces of the violin to measure the
resonances is not an adequate approach to understanding the violin. The sound to which a real
violin responds-is not a pure sine wave and it is not induced. it is a complex tone produced by
bowing. Moreover, the resonances in a whole violin derive both from the parts and from the
composition ofthe parts, indeed from the big chunk of air trapped within the composition of the
parts. Analyzing the parts, does not add up to an understanding of the behavior of the whole.

The point is not that these idealized acoustic analyses were pointless. Such work is
on-going, and has even produced techniques useful in violin-making (Hlutchins, 1981). And the
point is not that acoustic science has nothing to offer as a foundation for understanding violins
(bowing does not produce pure sine waves, but it does produce sound after all). The point is that
even in physics the initiil approach to applying science to design is often simplified and
inadequate, whereas the effective role is more interactive and reciprocal. Indeed, the comparison
can pushed much further: the research of the Catgut Society eventuated in the design and
development of a new set of stringed instruments, the Violin Octet. The analysis could go only
so far when its purview was an account of the standard string quartet (which acoustically is a very

Fvaluatinn. Description and Invention)5

accidental collection of instruments). To develop and assess laws of acoustic scaling, to test and
develop claims about the violin, it was necessary to build novel instruments (Hutchins, 1967;
Hutchins and Schelleng, 1967).

The violin is intrinsically a very appealing example. But one needn't go so far. Anyone in
the New York area recalls the renovation of Carnegie H tall. There was much concern and much
debate about the impact this would have on the famous acoustics of that hall. Acoustics, the old
science of physics, could not deductively direct or predict the outcome. Indeed. to this day the
only fact that everyone agrees on is that the acoustics of ('arnegie Hall are now different.

4.2 The current perplexity
Failure to appreciate the subtleties of technology development, coupled with the inherent

limitations of the human factors evaluation and cognitive description paradigms of IICI and the
emergence of the usability-innervated invention paradigm, has caused substantial perplexity in the
field. One body of work has responded to Newell and Card's (1985) worry that psychology must
be scientifically hard to survive in IICI by retreating into the study of low-level phenomena and
of highly constrained situations, creating a very insular research microcosm. One of the key areas
of its focus is replicating classic phenomena from the psychology of nonsense list learning (e.g.,
Polson, Kieras and Muncher, 1987). This approach flaunts all the limitations of the cognitive
description paradigm. It is not at all clear that it can be relevant to HCI design work.

Another body of work has rejected psychology as a totally inappropriate foundation for
design work in IICI (Whiteside and Wixon, 1987; Winograd and Flores, 1986). In this view,
focussing on models of the mind and conceiving of people as computational devices that process
inputs, generate goal lists, and then execute plans and responses all merely obscure and obstruct
the designer's most important responsibility and objective: to understand the user's needs and
wishes and to serve the user. This work flaunts the theoretical limitations of human factors
evaluation, looking to hermeneutics as a conceptual foundation for design and emphasizing
interpretations that are unique to the situation and to the individual doing the interpreting, and
explicitly discouraging model-building or any form of abstraction. Ilowever, since it is bound to
particular cases, this work cannot provide any framework for understanding lCI phenomena as
types.

Both approaches are dismal in prospect: one offering no hope of practical impact and the
other no hope of understanding. However, from the standpoint of the present discussion these
extreme positions have despaired too quickly. An orderly evolution of IICI work has produced a
paradigm that builds upon the genuine contributions of human factors evaluation and cognitive
description and at the same time redresses their limitations with respect to design impact and the
ecological validity of empirical work.

HCI has often been described as an "interdisciplinary" research area, but only now are the
full interdisciplinary possibilities emerging. Participating fully and in a variety of roles in the
evolution of computer technology offers psychologists in ItCI a uniquely creative opportunity.
It's a demanding opportunity. Inventing the future is more difficult than commenting on it.
Pushing psychological theory to interpret and analyze new technological situations and
embodying psychological claims and results in I1CI artifacts is not easier than evaluating finished
systems, compiting t-tests and calculating performance times. But then one does not move to
the frontier for-the comforts of familiarity. The possibility and the challenge of IICI today is to
move forward to new roles and new ideas in technology and science.

Evaluation, Description and Invention

Note

This paper is derived from lectures given at Teachers College, Columbia University, the
University of Michigan, the University of Western Ontario, and the IBM Watson Research
Center in the winter of 1988, and from collaborative discussions with Robert Campbe and Elliot
Soloway. I am grateful to John Black, Norman Brown. John Karat, Wendy Kellogg, John
Gould, Joan Roemer, Mary Beth Rosson, I inda Tetzlaff and Zenon Pylyshyn for comments on
the talks and on earlier versions of this chapter.

References

Adelson, B. (1981). Problem solving and the development of abstract categories in programming
languages. Memory and Cognition, 9, 422-433.

Anderson, JR. (1987). Methodologies for studying human knowledge. Brain and Behavioral
Sciences, 10(3), 467-505. (With commentary).

Anderson, i.R., Farrell, R. and Sauers, R. (1984). learning to program in li p. Cognitive
Science, 8, 87-129.

Anderson, J.R. and Skwarecki, E. (1986). The automated tutoring of introductory computer
programming. Communications of the ACM, 29, 842-949.

Barnard, P..., Hammond, N.V., Morton, J., long, .. B. and Clark, L.A. (1981). Consistency and
compatibility in human-computer dialog. International Journal of Man-Machine Studies, 15,
87-134.

Bennett, JL. (1984). Managing to meet usability requirements: Establishing and meeting
software development goals. In J. Bennett, J. Sandelin and M. Smith (Eds.), Visual display
terminals. Englewood Cliffs, NJ: Prentice-I lall, pages 161-184.

Bonar, J.G. and Liffick, B.W. (1987). A visual programming language for novices. University of
Pittsburgh Technical Report I SP-5.

Black, J.B. and Sebrechts, M.M. (1981). Facilitating human-computer communication. Applied
Psycholinguistics, 2, 149-177.

Brooks, F.P. (1987). No silver bullet: Essence and accidents of software engineering. IEEE
Computer, 20/4, 10-19.

Card, S.K., English, W.K., and Burr, B.J. (1978). Evaluation of mouse, rate-controlled isometric
joystick, step keys, and task keys for text selection on a CRT. Ergonomics, 21/8, 601-613.

Card, S.K. and Henderson, D.A. (1987). A multiple virtual-workspace interface to support user
task switching. In J.M. Carroll and P.P. Tanner (Eds.), Proceedings of CII!+ GI'87:
Human Factors in Computing Systems and Graphics Interface. (Toronto, April 5-9). New
York: ACM, pages 53-59.

Card, S.K., Moran, T.P. and Newell, A. (1983). The psychology of human-computer interaction.
Hillsdale, NJ: Erlbaum.

Carlisle, 1.11. (1970). Comparing behavior at various computer display consoles in time-shared
legal information. Rand Corporation, Report No. AD712695. Santa Monica, CA.

Carroll, J.M. (1982). Leaming, using and designing command paradigms. fluman Learning:
Journal of Practical Research and Applications, 1, 31 -63.

Carroll, J.M. (.1985). What's in a name? An essay in the psychology of reference. New York:
W.H. Freeman.

Carroll, J.M. (1987a). Five gambits for the Advisory Interface Dilemma. In M. Frese, U. Ulich,
and W. Dzida (Eds.) Psychological issues of human computer interaction in the work place.
Amsterdam: North Holland, pages 257-274.

Carroll, J.M. (Ed.) (1987b). Interfacing thought: Cognitive aspects of human computer interaction.
Cambridge, MA: Bradford Books/M.I.T. Press.

Carroll, J.M. (1988a). Modularity and naturalness in cognitive science. Metaphor and Symbolic
Activity, 3(2), 61-86.

Carroll, J.M. (1988b). The Nurnberg funnel: Designing minimalist instruction for practical
computer skill. Englewood Cliffs, NJ: Prentice Hall.

Evaluation, Description and Invention 17

Carroll, i.M. and Aaronson, A.P. (198). Learning by doing with simulated intelligent help.
Communicationr of the A CM, xx, pages.

Carroll, J.M. and Campbell, R.I. (1986). Softening up [lard Science: Reply to Newell and
Card. Human-Computer Interaction, 2, 227-249.

Carroll, J.M. and Campbell, R.L. (1988). Artifacts as psychological theories: The case of
human-compute: interaction. IBM Research Report RC 13454. Yorktown Heights, NY.

Carroll, J.M., Herder, R.E. and Sawtelle,).S. (1987). TaskMapper. In 1I... Bullinger and B.
Shackel (Eds.) Human-Computer Interaction.- Proceedings of INTERACT'87 Amsterdam:
North Holland, pages 973-978.

Carroll, J.M., Mack, R.I,. and Kellogg, W.A. (9188). Interface metaphors and user interface
design. In M. Helander (Ed.) Handbook of iluman-Computer Interaction. Amsterdam:
North Holland.

Carroll, J.M. and Mazur, S.A. (1986). Lisalearning. IEEE Computer, 19/l, 35-49.
Carroll, J.M. and Rosson, M.B. (1985). Usability specification as a tool in interactive

development. In If. llartson (Ed.) Advances in IIuman-Computer Interaction 1, Norwood,
NJ: Ablex, pages 1-28.

Carroll, J.M. and Soloway, F. (1988). The evolving role of software psychology in software
development practice.

Carroll, J.M. and Thomas, I.C. (1982). Metaphor and the cognitive representation of computing
systems. IEEE Transactions on Systems, Man and Cybernetic.r, 12, 107-115.

Chapanis, A. 1959. Research techniques in human engineering. Baltimore, MD: The Johns
Hopkins Press.

Chase, W.C. and Simon, H.A. (1973). Perception in chess. Cognitive Psychology, 4, 55-81.
Chi, M.T., Glaser, R. and Farr, M.J. (Eds.) (198). The nature of expertise. lHillsdale, NJ:

Erlbaum.
Chomsky, A.N. (1965). Aspects of the theory of.syntax. Cambridge, MA: MIT Press.
Crowder, R.G. (1976). Principles of learning and memory. lillsdale, N.J: Frlbaum.
Curtis, B. (1980). Measurement and experimentation in software engineering. Proceedings of the

IEEE, 68/9, 1144-1157.
Curtis, B. (Ed.) (1985). Human factors in software development. Washington, D.C.: IEEE

Computer Society Press.
Curtis, B. (1986). By the way, did anyone study any real programmers? In F. Soloway and S.

Iyengar (Eds.) Empirical studies of programmers. Norwood, NJ: Ablex, pages 256-262.
Curtis, B., Krasner, II. and Iscoe, N. (1988). A field study of the software design process for

large systems.
Dijkstra, E.W. (1972). Notes on structured programming. In O.J. Dahl, E.W. Dijkstra and

C.A.R. |loare (Eds.) Structured programming. New York: Academic Press, pages 1-82.
Dreyfus, H.L. and Dreyfus, S.E. (1986). Mind over machine. The power of human intuition and

expertise in the era of the computer. New York: The Free Press.
Esper, E.A. (1925). A technique for the experimental investigation of associative interference in

artificial linguistic material. Language Monographs, 1, 1-47.
rodor, J.A. (1968). Psychological explanation. New York: Random Ilouse.
Furnas, G.W., Landauer, T.K., Gomez, I..M., and Dumais, S.T. (1983). Statistical semantics:

Analysis ef the potential performance of key-word information systems. The Bell System
Technical Journal, 1753-1806.

Gleick, J. 1987. Chaos: Making a new science. New York: Viking.
Gomez, L.M. and Lochbaum, C.C. (1985). People can retrieve more objects with enriched

key-word vocabularies. But is there a performance cost? In B. Shackle (Ed.)
Hluman-Computer Interaction -- INTERACT'84. Amsterdam: North lHolland, pages
257-261.

Gomory, R.E. (1973). Technology development. Science, 220, 576-580.
Gould, JD. and Boies, S.J. (1983). Human factors challenges in creating a principal support

office system -- The Speech Filing System approach. ACM Tranraction on Office
Information Systems, 1(4), 273-298.

Pvaluation, Description and Invention 19

Gould, J.D., Boies, S.J., Levy, S., Richards, J.T., and Schoonard, J. (1987). The 1984 Olympic
Message System: A case study of system design. Communications of the ACM, 30, 758-769.

Gould, J.D., Conti, J., and Hovanyecz, T. (1983). Composing letters with a simulated listening
typewriter. Communications of the ACM, 26/4, 295-308.

Gould, J.D. and Lewis, C.H. (1985). Designing for usability: Key principles and what designers
think. Communications of the ACM, 28(3), 300-311.

Green, P. (1987). Tips on writing a good paper proposal. Computer Systems Technical Group
Bulletin, 14, 6-10.

Grudin, 1. 1988. Integrating human factors in software development. In F. Soloway, D. Frye
and S. Sheppard (Eds.) CHI'88 Conference on Human Factors in Computing Systems New
York: ACM (May 15-18, Washington, D.C.), pages 157-160.

Hauptmann, A.G. and Green, B.F. (1983). A comparison of command, menu-selection and
natural language computer programs. Behaviour and Information Technology, 2, 163-178.

Hayek, F.A. (1967). The theory of complex phenomena. In F.A. layek (Ed.) Studies in
philosophy, politics, and economics. Chicago: University of Chicago Press.

Hindle, B. (1981). Emulation and invention. New York: New York University Press.
Hlit, R.W., Boehm-Davis, D.A. and Schultz, A.C. (1987). Mental representations of programs

for student and professional programmers. In G.M. Olson, S. Sheppard and E. Soloway
(Eds.), Empirical studies of programming: Second workshop. Norwood, NJ: Ablex, pages
33-46.

Hutchins, C.M. (1962). The physics of violins. Scientific American, November (Reprint 289).
Hutchins, C.M. (1967). Founding a family of fiddles. Physics Today, 20(2), February.
Hutchins, C.M. (1981). The acom.istics of violin plates. Scientific American, 245(4), October,

170-186.
Hutchins, C.M and Schellung, J.C. (1967). A new concert violin. Journal of the Audio

Engineering Society, 15(4).
Kelley, J. F. (1984). An iterative design methodology for user-friendly natural language office

information applications. ACM Transactions on Office Information Systems, 2, 26-11.
Landauer, T.K. (1987a). Relations between cognitive psychology and computer system design.

In I.M. Carroll (Ed.) Interfacing thought: Cognitive aspects of human-computer interaction.
Cambridge, MA: Bradford/MIT Press, pages 1-25.

Landauer, T.K. (1987b). Psychology as a mother of invention. In I.M. Carroll and P.P. Tanner
(Eds.), Proceedings of C11I + GJ'87: Human Factors in Computing Sy items and Graphics
Interface. (Toronto, April 5-9). New York: ACM, pages 333-335.

Landauer, "r.K., Galotti, K.M. and llartwell, S. (1983). Natural command names and initial
learning: A study of text editing terms. Communications of the ACM, 26, 495-503.

Ledgard, H., Whiteside, I.A., Singers, A., and Seymour, W. (1980). The natural language of
interactive systems. Communications of the ACM, 23, 556-563.

Liebelt, L.S., McDonald, J.E., Stone, J.D. and Karat, J. 1982). The effect of organization on
learning menu access. Proceedings of the Human Factors Society, 26th Annual Meeting,
pages 546-550.

Love, T. (1977). Relating individual differences in computer programming performance to human
information processing abilities. Ph.D. Dissertation, University of Washington.

Mack, R.L. (1987). Understanding and learning text-editing skills: Observations on the role of
new user expectations. In S. Robertson, 1. Black and W. Zachary (Fxds.), Cognition,
Computing and Cooperation.

McKeithen, K.B., Reitman, J.S., Reuter, II.H., and Ilirtle, S.C. (1981). Knowledge organization
and skill differences in computer programmers. Cognitive P.sychology, 13, 307-325.

Moran, T.P. (1981). The command language grammar: A representation for the user interface of
interactive computer systems. International Journal of Man-Machine Studies, 15, 3-50.

Miller, G.A. (1956). The magical number seven plus or minus two: Some limits on our capacity
for processing information. Psychological Review, 63, 81-97.

Murrel, S. (1983). Computer communication system design affects group decision making. In A.
Janda (Ed.), Proceedings of CIII'83 Human Factors in Computing Systems. (Boston,
December 12-15). New York: ACM, pages 63-67.

Evaluation, Description and Invention 19

Newell, A. (1973). You can't play twenty questions with nature and win. In W. Chase (Ed.)
Visual information processing. New York: Academic Press.

Newell, A. and Card, S.K. (1985). The prospects for psychological science in human-computer
interaction. Human-Computer Interaction, I, 209-242.

Newell, A. and Simon, H.A. (1972). Human information processing. Englewood Cliffs, NJ:
Prentice- Hall.

Nielsen, J., Mack, R.L., Bergendorff, K., and Grischkowsky, N.I,. (1986). Integrated software
usage in the professional work environment: evidence from questionnaires and interviews.
In Proceedings of CHI'86 Human Factors in Computing Systems (Boston, April 13-17),
ACM, New York, 162-167.

Norman, D.A. (1981). The trouble with Unix. Datamation, 27, 556-563.
Norman, D.A. (1987). Cognitive Engineering -- Cognitive Science. In J.M. Carroll (Ed.)

Interfacing thought: Cognitive aspects of human-computer interaction. Cambridge, MA:
Bradford/MIT Press, pages 323-336.

Paivio, A. (1971). Imagery and verbal processes. New York: Ilolt, Rinehart & Winston.
Poison, P. (1987). A quantitative theory of human-computer interaction. In I.M. Carroll (Ed.)

Interfacing thought: Cognitive aspects of human-computer interaction. Cambridge, MA:
Bradford/MIT Press, pages IR4-235.

Poison, P., Kieras, D., and Muncher, E. (1987). Transfer of skills between inconsistent editors.
Microelectronics and Computer Technology Corporation Technical Report
ACA-HI-395-87, Austin, Texas.

Popper, K. (1965). Conjectures and refutations. New York: |larper and Row.
Postman, 1,. and Stark, K. (1962). Retroactive inhibition as a function of set during the

interpolated task, .Iournal of Verbal Lmarning and Verbal Behavior. /0, 44-51.
Pylyshyn, Z. (1973). What the mind's eye tells the mind's brain: A critique of mental imagery.

Psychological Bulletin, 80, 1-24.
Reiser, B.J., Friedman, P., Gevins, .J., Kimberg, D.Y., Ranney, M. and Romero, A. (1988). A

graphical programming language interface for an intelligent I isp tutor. Princeton University
CSL Report 15.

Robertson, G., McCracken, D., and Newell, A. (1981). The ZOG approach to man-machine
communication. International Journal of Man-Machine Communication, 14, 461-488.

Rosson, M.R. and Alpert, S. (1988). Cognitive implications of object oriented programming.
Rosson, MB., Maass, S.. and Kellogg, W.A (1988). The designer as user: Building

requirements for design tools from design practice.
Sheil, B.A. (1981). The psychological study of programming. ACM Computing Surveys, 13,

101-120.
Sheppard, S.B., Curtis, B., Millman, P., and Love, T. (1979). Modem coding practices and

programmer performance. IEEE Computer, 12/12, 41-49.
Shneiderman, B. (1980). Software psychology: Human factors in computer and information

systems. Cambridge, MA: Winthrop.
Shneiderman, B. (1983). Direct manipulation: A step beyond programming languages. IEEE

Computer, 16(8), 57-69.
Shneiderman, B. and McKay, D. (1976). Experimental evaluations of computer program

debugging and modification. Proceedings of the 6th International Congress of the
Internatidnal Ergonomics Association, July.

Soloway, E. and Ehrlich, K. (1984). Empirical studies of programming knowledge. IEEE
Transactions on Software Engineering, SE-10(5), 595-609.

Stefik, M., Foster, G., Bobrow, D., Kahn, K., lanning, S. and Suchman, L. (1987). Beyond the
chalkboard: Computer support for collaboration and problem solving in meetings.
Communication of the A CM, 30, 32-47.

Suchman, L. (1987). Plans and situated actions. Cambridge: Cambridge University Press.
Tennant, H.R., Ross, K.M. and Thompson, C.W. (1983). Usable natural language interfaces

through menu-based natural language understanding. In A. Janda (Ed.), Proceedings of
CH11'83 Human Factors in Computing Systems. (Boston, December 12-15). New York:
ACM, pages 154-160.

Evaluation, Decription and Invention 20

Uebbing, I. Panel on making products. In I. Power and Z. Weiss (Eds.), Proceedings
OOPSLA'87: Object-Oriented Programming Systems, languages and Applications. Special
issue of Sigplan Notices, vol. 23, no. 5, 1998 page 105-111 (Orlando. FL.. October 4-8,
1987).

Walther, G.l. and O'Neil, I.F. (1974). On-line user-computer interface: the effects of interface
flexibility, terminal type, and experience on performance. Proceedings of the National
Computer Conference, 43, Montvale, NJ: AFIPS Press.

Weissman, .. (1974). A methodology for studying the psychological complexity of computer
programs. Ph.D. Dissertation, University of Toronto.

Whiteside, J., Bennett, J. and Holtzblatt, K. (1988). Usability engineering: Our experience and
evolution. In M. Ilelander (Ed.) Handbook of luman-Computer Interaction. Amste-dam:
North Holland.

Whiteside, J., Jones, S., Levy, P.S. and Wixon, 1). (19R5). User performance with command,
menu, and iconic interfaces. In !,. Borman and R. Curtis (Eds.) Proceedings of C1i1,85:
Human Factors in Computing Systems. (San Francisco, April 14-1R) New York: ACM,
pages 185-191.

Whiteside, J. and Wixon, D. (1987). Improving human-computer interaction -- a quest for
cognitive science. In .I.M. Carroll (Ed.) Interfacing thought: Cognitive aspects of
human-computer interaction. Cambridge, MA: Bradford/MIT Press, pages 337-352.

Williams, M.D. (1984). What makes RABBIT run? International .Iournal of Man-Machine
Studies, 16, 405-438.

Winograd, T. and FIores, F. (1986). Understanding computers and cognition: A new foundation
for design. Norwood, NJ: Ablex.

Wixon, D., Whiteside, J., Good, M.. and Jones. S. (1983). Building a user-defined interface. In
A. Janda (Ed.), Proceedings of CII'R3 Ihunan Factors in Computing Systems. (Boston,
December 12-15). New York: ACM, pages 24-27.

rvaluation, Description and Invention 21

